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Abstract
We present the results of high-statistics calculations of correlation functions generated with single-

baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations

generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action

and Symanzik-improved gauge action. A total of 292, 500 sets of measurements are made using

1194 gauge configurations of size 203 ×128 with an anisotropy parameter ξ = bs/bt = 3.5, a spatial

lattice spacing of bs = 0.1227±0.0008 fm, and pion mass of Mπ ∼ 390 MeV. Ground state baryons

masses are extracted with fully quantified uncertainties that are at or below the ∼ 0.2%-level in

lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat

lower level of precision. In the case of the nucleon, this negative-parity state is above the Nπ

threshold and, therefore, the isospin-1
2 πN s-wave scattering phase-shift can be extracted using

Lüscher’s method. The disconnected contributions to this process are included indirectly in the

gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in

the various correlation functions is explored and is found to degrade exponentially faster than

naive expectations on many time-slices. This is due to backward propagating states arising from

the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction.

We explore how best to distribute computational resources between configuration generation and

propagator measurements in order to optimize the extraction of single baryon observables.
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I. INTRODUCTION

One of the primary goals of lattice QCD (LQCD) is to calculate the properties and inter-
actions of nucleons and, more generally, systems comprised of multiple hadrons. Precise
exploration of the simplest multi-hadron systems has recently become possible with sig-
nificant advances in computing resources, as well as through algorithmic and theoretical
developments. The two-pion system π+π+ is the simplest of such multi-hadron systems to
calculate in LQCD, and current computational resources have allowed for a precise deter-
mination of the π+π+ scattering length [1, 2] at the ∼ 1% level. Recently, we have explored
systems comprised of up to twelve π+’s [3, 4] and also systems comprised of up to twelve
K+’s [5] for the first time, allowing a determination of the three-π+ and three-K+ interac-
tions. In general, a determination of the two-particle scattering amplitude, or multi-body
interactions, with LQCD requires calculating the energy-eigenvalues of the system in the
finite-volume [6–9]. The energy differences between the multi-particle energy-levels in the
finite-volume and the sum of the particle masses determines the scattering amplitude or
interaction. As processes of interest to low-energy nuclear physics are in the MeV energy-
regime, while the masses of the baryons and nuclei are in the GeV regime, the energy-levels
in the volume must be determined to high precision to yield useful constraints and pre-
dictions for scattering amplitudes, phase-shifts and electroweak properties. Consequently,
correlation functions of systems comprised of more than one hadron must be calculated with
small statistical and systematic uncertainties (≪ 1 %) in order to provide useful information
about low-energy nuclear interactions and nuclei.

The correlation functions associated with systems of baryons (and, more generally, states
other than the pion) suffer from an exponential degradation of the signal-to-noise ratio as
a function of time as argued by Lepage [10]. The scale that dictates this degradation is
the difference between the total energy of the baryons in the system and half of the total
energy of hadrons that contribute to the correlation function associated with the square of
the interpolating operator for the baryon system. An example is provided by the two point
nucleon correlator (N is an interpolating field with the quantum numbers of the nucleon)
where,

signal ∼ 〈N(t) N(0)〉 t→∞−→ Z e−MN t , (1)

noise ∼
√

〈N(t) N(t)N(0) N(0)〉 t→∞−→ Z ′ e−
3

2
Mπt ,

neglecting effects of the finite temporal extent which we discuss below (here Z and Z ′ are
overlap factors). Since MN − 3

2
Mπ > 0, the signal degrades exponentially in time with this

exponent. Further, for multi-baryon systems, this exponent is scaled by the baryon number,
B, and it consequently requires exponentially larger computational resources to calculate
the properties of systems containing B > 1 baryons than a single baryon. In many regards,
it is this signal-to-noise problem that distinguishes LQCD calculations of quantities typically
of importance to nuclear physics from those typically of importance to particle physics.

The main motivation for our present work is to explore very high statistics calculations of
the energy spectrum of B = 0, 1 correlation functions, quantifying the statistical scaling and
identifying any issues that appear in the regime of precision calculations. More generally, we
aim to assess the feasibility of extracting precise phase-shifts and multi-nucleon interactions
from multi-baryon systems but we leave these discussions to subsequent work. Our focus is
on the statistical scaling behavior of these measurements instead of on measuring physically
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relevant quantities. Consequently, we work with a single ensemble of gauge configurations
that was produced by the Hadron Spectrum Collaboration [11] (the details of these config-
urations are discussed below). The analysis presented here enables us to identify a number
of issues that will be important to LQCD calculations of quantities where exponentially
degrading signal-to-noise ratios are a dominant concern:

1. While the classic argument of Lepage [10] concerning the behavior of the signal-to-noise
ratios of baryon correlation functions seems to be on a solid theoretical footing, it has
yet to be explored and verified through direct calculation. We examine the signal-to-
noise ratios of the single hadron correlation functions in detail and present a modified
version of the Lepage argument that incorporates the finite extent of the temporal
direction of the gauge-field configuration, focusing on the case of quark propagators
subject to anti-periodic temporal boundary conditions (BCs). Over large regions of the
temporal extent of the lattice, the signal-to-noise ratio degrades exponentially faster
than expected from the original Lepage argument, see Sec. VIII.

2. At present, and even more so in the past, the generation of gauge-field ensembles
consumes most of the computational resources of LQCD calculations.1 However, it
is not clear what the optimal distribution of computational resources between gauge-
field production and measurements (propagator calculations and contractions) is when
one is interested in noisy quantities. To address this, we explore what can be accom-
plished by performing hundreds of measurements per configuration, and how precisely
the baryon ground-state masses can be determined from an ensemble of 1194 con-
figurations. We also study whether the measurements “saturate” after some critical
number have been performed on one configuration (that is, exhibit little or no im-
provement in uncertainties after a critical number of measurements), finding that as
far as we can probe, they do not.

3. Correlation functions that are determined to high precision are amenable to analysis
with a variety of techniques, beyond those typically used successfully with low statistics
data. On these anisotropic configurations, multiple (five or more) exponential fits
to such correlation functions become stable as statistical fluctuations decrease, and
the ground state energies can be extracted with high precision. We show that the
generalized effective mass (EM) method, in which multiple energies are extracted
from a linear system (a method developed by Gaspard Riche de Prony in 1795) also
becomes useful for correlation functions with small uncertainties. As two (different
but correlated) correlation functions are computed per species of hadron, this method
is extended to construct the matrix-Prony method, which is found to be a very clean
and effective tool for determining the ground-state energies.

4. While the correlation function generated by a single baryon interpolating operator will
be dominated by the baryon ground-state at large times, it also contains contributions
from all states that can couple to the operator. This includes multi-hadron states. The
backward propagating component of the nucleon correlation function is dominated by
the lowest energy negative-parity I = 1

2
state for the projection-operator we have

applied to the correlation functions. By measuring the energy of this state, which is

1 For example, the USQCD collaboration used ∼ 60% of its resources for ensemble generation in 2008/9.
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above the πN threshold and therefore is a continuum state, the phase-shift associated
with the s-wave πN interaction is determined at this energy. The important point here
is that this process contains disconnected diagrams, which are encoded in the gauge-
field configurations, and do not require additional (of order the volume in number)
calculations.

5. We also note that thermal states, while strongly suppressed, are seen in our high pre-
cision data. In these states, some part of the hadronic state propagates backward in
time and can consequently manifest itself in the correlation function as an exponential
with energy less than that of the zero temperature ground state. These contributions
have amplitudes that are exponentially suppressed by the temporal extent of the con-
figuration, but they can be extracted in certain temporal regions of the correlation
function(s) where other components are also small. They can lead to pollution of the
ground state signal.

The structure of this work is as follows. Section II introduces the details of the lattice cal-
culations we perform, and in section III we discuss our expectations for the hadron spectrum
on this ensemble. Section IV introduces the tools used in our analysis and presents detailed
comparisons of the different methods we utilize. Following this, sections V, VI and VII
present our main results for the pseudo-scalar mesons, ground-state baryons and negative-
parity excited states, respectively. In sections VIII and IX we discuss the behaviour of noise
in our measurements and investigate the scaling the hadron masses for varying numbers of
gauge configurations and measurements. We conclude in section X. In subsequent works,
we will address states with baryon number, B > 1.

II. LATTICE QCD CALCULATIONS

A. Calculational Details

In this study, we employ an ensemble of the nf = 2 + 1-flavor anisotropic clover gauge-field
configurations that are currently being produced by the Hadron Spectrum Collaboration [11].
These ensembles are being generated with dynamical tadpole-improved clover fermions and
a Symanzik-improved gauge action (see Ref [11] for full details). All of the calculations
that we present here were performed on a single ensemble of gauge-field configurations of
size 203 × 128 with an anisotropy parameter of ξ = bs/bt = 3.5, a spatial lattice spacing of
b = bs = 0.1227 ± 0.0008 fm, a pion mass of Mπ ∼ 390 MeV and a kaon mass of MK ∼
546 MeV. The ensemble used in this study contains 1194 configurations taken at intervals
of 10 trajectories, after allowing 1000 trajectories for thermalization. Ref. [11] provides a
comprehensive analysis of autocorrelation times and thermalization. Some correlation is
seen to be present between configurations separated by 30 trajectories.

The light and strange quark-propagators were computed using the same fermion action
used in the gauge-field generation. We use the clover discretization of the fermion action
as it requires significantly less computational resources than, for instance, the Domain-Wall
discretization, in both the production of gauge-field configurations and in the calculation
of quark-propagators, while retaining an O(b)-improved spectrum. Unlike the Domain-
Wall discretization, the Clover discretization does not have a lattice chiral symmetry. At
moderate lattice spacings, this may significantly impact the extraction of the properties and
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FIG. 1: The number of propagators, Nprop, used in measurements of correlation functions on

each configuration used in this study. For the purpose of clarity, bins of four configurations (40

trajectories) have been averaged. The ensemble-average of the number of propagators calculated

per configuration, 245, is indicated by the dashed horizontal line.

interactions of pions and kaons, but it is not expected to produce systematic uncertainties
that are as significant in the properties and interactions of baryons(this remains to be verified
and will not be addressed here).

The quark propagators are calculated with anti-periodic BC’s imposed on the time-
direction and periodic BCs imposed on the spatial directions. As multiple propagators
are calculated on each configuration, iterative solvers beyond the simple conjugate gradient
algorithm can provide significant speed improvements. In particular, we employ the deflated
conjugate gradient algorithm proposed in Ref. [12], and implemented in the Chroma lattice
field theory library [13] as the EigCG inverter. In our typical production runs, we compute
from 30 to 100 propagators in sequence, observing a factor of ∼ 7 improvement in inversion
speed after the first few solves are used to deflate low-lying from subsequent inversions.
Figure 1 shows the details of the propagators computed in this work. The histogram in-
dicates the number of propagators computed on each of the 1194 configurations (averaged
over four adjacent configurations for clarity) . The total number of propagators computed
in this dataset is 292,500, an average of 245 propagators per configuration (we note that
the maximum number of point-to-all propagators that could be computed on each of the
configurations is ∼ 106)

Each propagator is generated from a gauge-invariantly Gaussian-smeared source [14, 15],
on a stout-smeared gauge-field in order to optimize the overlap onto the ground-state
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FIG. 2: The separation between pairs of sources on a given configuration, defined to be the mini-

mum distance between two sources, including the effect of the (anti-) periodic boundary conditions.

The height of the bar at R = 0 corresponds to the total number of propagators.

hadrons. On each configuration, the locations of the propagator source points are chosen
randomly throughout the configuration. In fig. 2, we show a histogram of the 4d-separation,
R, between the each pair of sources on each configuration. The shoulder at R ∼ 4 fm ap-
pears because of the (anti) periodic boundary conditions. The average source separation is
〈R〉 ∼ 2.9 fm and the source density is 3.43 fm−4.

B. Correlation Functions

The propagators are used to compute two-point correlation functions which, for baryons,
take the form

CH;Γ(p; t) =
∑

x

eip·x Γα
β 〈 Hβ(x, t)Hα(x0, 0) 〉 , (2)

where Hα(x, t) is an interpolating operator for the appropriate baryon state, e.g., for the
proton Hα(x, t) = ǫabc

(

ua,T C γ5d
b
)

uc,α(x, t) where C is the charge conjugation matrix. The
Dirac matrix Γ is an arbitrary particle-spin-projector and the point x0 is the propagator
source point. Similar correlation functions are used for the mesons. The interpolating-
operator at the source, H, is constructed from gauge-invariantly-smeared quark field opera-
tors, while at the sink, the interpolating operator is constructed from either local quark field
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operators, or from the same smeared quark field operators used at the source, leading to two
sets of correlation functions. For brevity, we refer to the two sets of correlation functions
that result from these source and sink operators as smeared-point (SP) and smeared-smeared

(SS) correlation functions, respectively.
We calculate the smeared-point and smeared-smeared correlation functions associated

with the π+, K+ (Jπ = 0−) mesons, and the N, Λ, Σ, Ξ (Jπ = 1
2

+
) baryons. For the baryons,

the energy projectors Γ± = 1
2
(1±γ0) are used to project separately onto either the positive-

or negative-energy (parity) states (one of which can be time-reversed and added to the other
to improve statistics). Correlation functions associated with a given pair of interpolating
fields are averaged over all sources on each configuration, producing one correlation function
per interpolating operator pair per configuration.

C. Statistical Behavior

Before extracting results for observables, we analyze the statistical behavior of the mea-
sured correlators. As the computational cost of each measurement is much less than the
computational cost of generating each configuration, performing multiple, O(10), measure-
ments on each configuration is a practical way to cheaply reduce uncertainties and is an
approach that has been used by many groups. Averaging the measurements on a given
configuration produces a more accurate estimation of the correlation function on that con-
figuration. A priori, one might argue that performing a significantly larger number, say
O(100–1000), of measurements on a given configuration is an inefficient use of computing
resources as the additional measurements will contain little or no new information and will
not decrease the statistical uncertainty in the measurements of interest. This argument is
likely true for configurations extending over small volumes. Physically, one expects there
are a number of length scales associated with the possible “saturation” density of the mea-
surements on a given configuration. As the lightest hadron is the pion, one expects the
critical saturation density of measurements to depend parametrically upon the dimension-
less quantity ρ/M4

π , where ρ = Nsrc/V where V is the four-volume, and Nsrc is the number
of measurements on the configuration. For a simple quantity such as the energy, E, of an
eigenstate in the volume, one also expects to find a dependence upon ρ/E4. For instance,
we expect a dependence upon the dimensionless quantity Nsrc/(V M4

N ) for the nucleon.
Figure 3 shows the scaling of the uncertainty in the effective mass (the logarithm of the
ratio of the correlator on adjacent time-slices) at one particular time-slice for the π+, K+,
N and Ξ as a function of the number of measurements per configuration. This calculation
was performed on 664 of the 1194 configurations in the ensemble, those for which we have
made more than 200 measurements. The correlation functions, after being averaged over the
sources on each configuration, were blocked in units of 10 configurations (100 trajectories),
and the uncertainties in the effective mass (EM) on each time-slice were generated with
the single omission Jackknife procedure. The π+ and K+ correlation functions clearly show
deviations from statistical independence beyond ∼ 10 sources per configuration, and by 200
sources per configuration there is little to be gained by performing additional measurements
on a configuration. In contrast, measurements of the baryon correlation functions are be-
having as if they are statistically independent even with 200 sources per configuration. It is
clear that the statistical uncertainties in the baryon correlators can be further reduced by
performing even more measurements per configuration. These observations are consistent
with the arguments regarding the critical source densities.

8



æ

æ
æ

æ

æ
æ

æ

à

à
à

à

à

à
à

ì

ì

ì

ì

ì

ì

ì

ò

ò

ò

ò

ò

ò ò

ææ

àà

ìì

òò

Π

K

N

X

1 2 5 10 20 50 100 200
0.001

0.002

0.005

0.010

0.020

0.050

0.100

0.200

Nsrc

∆C

XC\

FIG. 3: A log-log plot of the normalized uncertainty in the mean value of the effective mass of

the π+, K+, N, and Ξ at time-slice t = 34, t = 34, t = 39, and t = 49, respectively, as a

function of the number of sources on 664 of the gauge-field configurations (those with more than

200 measurements). The fits correspond to a power-law of the form δC/〈C〉 = A (Nsrc)
b. The best

fit values for the exponent are b = −0.31(2),−0.36(1),−0.51(9), and −0.41(5) for the π+, K+, N ,

and Ξ, respectively. (Statistically independent measurements would produce b = −1
2 .)

An alternative way to investigate this question is to consider the correlation between
measurements of a correlation function from different sources on the same configuration. A
natural quantity to consider is an extension of the standard autocorrelator to a source-to-
source autocorrelator, χsrc, defined by

χsrc(R; t0) =

[

∑

c,s

C(t0; c, s)

]−2 [

∑

c

∑

s1

∑

s2

C(t0; s1, c)C(t0; s2, c)θ(s1, s2 : R)

]

− 1 (3)

where C(t, c, s) is the correlation function of interest evaluated on time-slice t, configuration
c and from source s and the function θ(s1, s2 : R) is unity if the two sources are separated by
a 4d-distance |s1 − s2| < R. A nonzero value of χsrc(R) indicates the presence of significant
correlations over distances shorter than R. We have calculated χsrc for a number of the
correlation functions we analyze but find no sign of deviation from zero even for the case of
the π+. This may in part be due to the poor statistics at small source–source separations
(see Fig. 2).
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FIG. 4: The normalized uncertainties in the measurements of N (left panel) and π+ (right panel)

correlation functions for time-slice t = 10 are shown for some individual configurations as a function

of the number of measurements on that configuration. The dashed lines significantly below the

data are the normalized uncertainties on our full ensemble.

A further consideration is that for a given number of configurations, at some value of Nsrc,
the uncertainty in the measurements of a correlation function on a given configuration will
become smaller than the uncertainty in the measurements over the entire ensemble. Once
this limit is reached, it is pointless to perform further measurements without also increasing
the ensemble size. Our measurements are far from this limit as is illustrated by fig. 4 where
the uncertainties in the measurements of π+ and N correlation functions on some individual
configurations are shown as a function of the number of sources and compared to the overall
uncertainty attained with the full ensemble.

An important consideration in generating high statistics measurements is the correlation
between configurations. Ideally, enough trajectories separate each gauge-field in the ensem-
ble so that they are statistically independent to the precision of the calculation of interest.
The degree of correlation between configurations dictates the number of measurements that
should be performed on a given set of configurations before it is more cost effective to enlarge
the ensemble. In fig. 5 we show the uncertainty at given time-slices of the EM for the π+,
K+, N and Ξ as a function of the number of gauge-fields on which 50 measurements are
performed. The configurations are maximally separated in Monte-Carlo time, but an in-
creasing number of configurations means a reduced separation in Monte-Carlo time between
each configuration. The curves in fig. 5 correspond to what is expected for statistically
independent configurations. The 100 maximally separated configurations are separated by
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FIG. 5: A log-log plot of the normalized uncertainty in time-slice t = 34, t = 34 t = 29 and

t = 39 of the EM of the π+, K+, N and Ξ, respectively, as a function of the number of gauge-

field configurations, each with 50 measurements. The fits correspond to a power-law of the form

δC/〈C〉 = A (Ncfg)
b. The best fit values are b = −0.52(1),−0.47(1),−0.45(2), and −0.45(1) for the

π+ K+, N, and Ξ, respectively. (Statistically independent measurements would produce b = −1
2 .)

80 trajectories, the configurations separated by 20 trajectories appear to be contributing
as one expects for statistically independent configurations (assuming that those separated
by 80 trajectories are statistically independent). This is consistent with the hadronic auto-
correlation times measured on sets of configurations similar to this ensemble in Ref. [11],
τ̂π ∼ τ̂N ∼ 40.

D. Computational Costs

These calculations required significant computing resources to perform; the total cost
of the measurements was approximately 7 × 106 JLab 6n cluster node hours (this is an
older machine with a dual core 3 GHz Pentium D processor per node) distributed over
various computational facilities. To put this into context, the generation of the gauge-field
configurations required approximately one-third of this time [16]. Our calculational method
makes use of hadronic building blocks (partly contracted sets of propagators) which are
extremely useful for contracting multi-particle correlation functions but inefficient for single
hadron correlation functions; only 4× 106 JLab 6n cluster node hours were directly relevant
to the calculations presented herein. Nevertheless, it seems that in order to achieve the level
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of precision of the B = 1 correlation functions presented here, propagator generation rather
than gauge-field generation is the most computationally intensive component of the LQCD
calculation. However, even this will be superseded by the calculation of the contractions
that are required for systems involving more than two baryons (the subject of future work).

III. EXPECTED SPECTRA

The form of the correlation functions that are expected to emerge from these calculations
is a textbook discussion, but is now becoming more relevant as advances in the field are
enabling more complicated processes to be explored, such as scattering, excited states and
multi-hadron interactions. Additionally, the accurate statistical sampling we perform in
the current work brings to light features that have been safely neglected in the past. A
discussion of the impact of the boundary conditions (here we use anti-periodic temporal
BCs for the quark fields) on multiple meson correlation functions that were used in a recent
calculation of K+K+ scattering can be found in Ref. [5], and a more detailed derivation for
a two particle system can be found in Ref. [17].

For interpolating functions OA,B, the correlation function that is calculated with anti-
periodic BCs on the quark-fields is

GO(t) =
1

Z
Tr

[

e−ĤT Ô†
A(t) ÔB(0)

]

=
1

Z

∑

j,k

e−EjT e(Ej−Ek)t 〈j| Ô†
A(0) |k〉〈k| ÔB(0) |j〉 , (4)

where T is the length of the time-direction and Z = Tr
[

e−ĤT
]

is the partition function.2

As an example, consider the interpolating operator with baryon number zero, strangeness
zero (S = 0), and isospin equal to two (I = 2) that couples to the π+π+-state. This

state can be written in terms of hadronic field operators as Ô(0) = Zπ+π+ π+π+ +
Zπ+π+π0π0 π+π+π0π0 + ..., where the ellipses denote all other possible hadronic field op-
erators with the same quantum numbers and the Z’s are unknown overlap factors. In
Eq. (4), this operator thus gives non-zero values for 〈π−π−| Ô(0) |0〉, 〈π−| Ô(0) |π+〉,
〈0| Ô(0) |π+π+〉, plus all other states with the same quantum numbers as the π+π+

source. Consequently the corresponding correlation function contains exponentials e−M t

with energies M = Eπ+π+ , M = Eπ+ − Eπ+ = 0, M = −Eπ+π+ , M = Eπ+π+π0π0,
M = −Eπ+π+π0π0, M = Eπ+π+K+K−,. . . . In the zero temperature limit, only those ex-
ponentials with M ≥ Eπ+π+ survive. States with energies less than Eπ+π+ are thermal
excitations, for instance arising from the process shown in fig. 6, and are quite apparent
in the measured I = 2 ππ correlation functions and have also been observed in hadronic
systems involving a static quark [18].

Baryon correlation functions are somewhat different, as the interpolating operator for the
single nucleon, for instance, can couple not only to the N, but also to a state containing the
N and an even number of π’s, to a p-wave ΛK state, to a p-wave ΣK state,to a p-wave Nπ
state, and to any other state with the same quantum numbers as the nucleon. Further, it can

2 Typically, OA and OB are closely related; in our calculations, they differ only in the type of smearing of

the quark fields and in the momentum injection.
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FIG. 6: A depiction of the thermal contribution to ππ correlation function. The vertical lines

indicate the anti-periodic temporal boundaries of the configuration and the grey regions represent

the π+π+ source and sink. The solid lines correspond to valence quark propagators.

also couple to backward propagating negative-parity states, such as an s-wave Nπ. Finally,
the single nucleon interpolating operator can couple forward and backward propagating
hadronic states (these are thermal states as they exist only because of the finite temporal
extent (temperature) of the configuration), an example being a forward propagating N and
a backward propagating π or vice versa. These states are simply illustrated by an example
shown in fig. 7, a Nπ thermal state. Here the finite temporal extent of the configuration
is indicated by the vertical lines (these should be (anti-)identified). The two grey regions
correspond to the source and sink interpolating field. In the case depicted, the interpolating
field at the source is N = (uCγ5dT )u and that at the sink is N = (uT Cγ5d)u, suppressing
spin and color indices. For the usual zero temperature ground state, the source produces
three valence quarks and the sink annihilates three valence quarks. In the thermal state
depicted, the source (right grey region) produces two valence anti-quarks and a valence
quark (solid lines) while also producing, via gluonic interactions, a sea quark-antiquark pair
(dashed line). The three anti-quarks between the grey regions combine to form an anti-
nucleon propagating as exp(−MN (T − t)) where t is the separation between the source and
sink and we ignore excited states for simplicity. The quark–anti-quark pair propagating
around the temporal boundary (since two quarks propagate, the boundary appears periodic
at the hadronic level) contribute a factor of exp(−Mπt) where T is the temporal extent of
the configuration. The resulting contribution to the two point correlator is then

G(t) ∼ ZNπ e−MπT e−(MN−Mπ)t , (5)

corresponding to a state with energy MN − Mπ in the observed spectrum.
In the case of the correlation function resulting from a single nucleon interpolating opera-

tor in the A1 representation of the cubic group, one expects to see a state with energy equal
to the N mass, MN , and also states (a subset of all states) with energy MN − 2Mπ − δEππ,
MN + δENπ, and MN + 2Mπ + δENππ, where δEππ is the interaction energy of two π’s in an
I = 0 state, δENπ is the interaction energy of the Nπ system, while δENππ is the interaction
energy of the Nππ system. Particularly disturbing is the state with energy MN + δENπ

corresponding to Nπ moving forward in time and a π moving backwards in time, that con-
spire to produce a state with an energy that differs from the nucleon mass only by the Nπ
interaction energy. Such states will be exponentially suppressed by the temporal extent of
the configuration, however, accurately disentangling such states from the zero temperature
ground state will ultimately require calculations on ensembles of gauge-field configurations
with different temporal extents.
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FIG. 7: A depiction of the thermal Nπ system produced by the single-nucleon interpolating field.

The vertical lines indicate the anti-periodic temporal boundaries of the configuration and the grey

regions represent the single nucleon source and sink. The solid lines correspond to valence quark

propagators, while the dashed lines correspond to a sea quark loop from the gauge-field.

It is important to realize that thermal states are not simply a curiosity that can be
safely ignored. As we shall see in Section VIII, they dominate the statistical uncertainty of
baryon correlation functions at large times, providing deviations from the naive form of the
signal-to-noise ratio. The amplitudes of these states are exponentially suppressed by the
temporal extent of the configuration times the mass of the backward going hadronic state.
Consequently, the most important thermal states involve backward propagating pions, and,
to suppress these states, the product MπT must be large. As the chiral limit is approached
this will become more and more difficult since, in the limit, it is impossible to separate any
particular state from itself and any number of pions.

IV. ANALYSIS METHODS

A. Multi-Exponential Fits

The high statistics accumulated for this work allows us to perform stable multi-
exponential fits using a standard χ2 minimization. In this section, we explore the deter-
mination of the ground and excited states as a function of several variables; the number of
exponentials used in the fit function, Nexp, the range of the fit, R, the number of sources
per configuration, the number of configurations, the blocking time τblock, and the (effec-
tive) anisotropy, ξeff . We present details of our fits for the Ξ, using a correlated fit to the
smeared-smeared and smeared-point correlation functions.

To begin, we performed combined multi-exponential fits by minimizing

χ2 =
∑

t,t′,s,s′

[ys(t) − Cs(t)]
(

Cov−1
)s,s′

t,t′
[ys′(t

′) − C ′
s(t

′)] (6)

where ys(t) are the lattice measured correlation functions, s = [SS, SP ], and Cov is the
covariance matrix between both time-slices and correlation functions. The fitting functions
used are,

CSS(t) =
∑

n

ZS
n ZS

n e−Ent , CSP (t) =
∑

n

ZS
n ZP

n e−Ent , (7)

where CSS (CSP ) denotes the smeared-smeared (smeared-point) correlation function. To
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perform these fits we start with a single exponential and perform the correlated fit to ZS
0 ,

ZP
0 and E0. A selected set of best fit parameters from this fit are used as initial estimates

for the two exponential fits. This is performed recursively by taking the best fit results from
the N exponential fit as an initial estimates to the N+1 exponential fit. With this strategy,
successful minimizations with up to six exponentials have been performed. However, with
the inclusion of the fifth and higher exponentials, the minimizer performs poorly, and often
returns two masses that are degenerate within their uncertainties. Furthermore, as discussed
in detail in the previous Section, the expected spectrum of states on these anisotropic config-
urations is such that the resulting masses for the excited states are likely averages of nearby
energy levels, see also Section IVE below for demonstrations of this. For these reasons, we
are only confident in the ground state energies extracted in these fits. However, the number
of exponentials used in a successful minimization plays an important role in minimizing the
fitting systematic uncertainty.

The extracted mass of the Ξ as a function of the number of exponentials in the fit form is
detailed in Table I. With the high statistics in this study, fitting a single exponential yields a
statistical uncertainty of less than 0.2%, with a slightly larger fitting systematic uncertainty,
however, 50 time-slices must be discarded because of excited state contamination. For
our multi-exponential fits, the fitting systematic uncertainty is defined to be the standard
deviation of all successful fits in a given minimization. To define a successful fit, we take a
fixed length in time, R ≡ tmax − tmin, and a fixed set of initial parameters, and keep all fits
with an integrated probability distribution Q > 0.1 while varying tmin.3 One observes that
the statistical and systematic uncertainties are not further reduced by including more than
three exponentials in the fit. The resulting ground state mass of the Ξ as a function of the
tmin used in the fit is shown in upper panel of fig. 8 (in a style similar to an effective mass
plot) with the color and symbol shapes indicating the number of exponentials in the fit. The
extraction of the nucleon mass is also shown in the lower panel. Increasing the number of
exponentials in the fit, Nexp, allows the tmin-interval over which the ground-state energy is
seen to plateau to be brought closer to the source where statistical uncertainties are much

TABLE I: Multi-exponential fits to smeared-smeared and smeared-point Ξ–correlation functions

as a function of the number of exponentials, Nexp. The number of successful fits, Nsuc has been

defined to be fits with Q > 0.1 for a fixed time-length R with a fixed set of initial parameter values.

The time window listed is taken as a representative example of a good fit. The first uncertainty is

statistical while the second is taken from the standard deviation of successful fits, as defined above.

Ξ

btM btM
′ Nexp R: tmin, .., tmax Nsuc τblock ξeff Nsrc Ncfg χ2/dof Q

0.24138(33)(44) – 1 20: 47–67 16 1 3.5 245 1194 0.50 1.00

0.24108(28)(10) 0.377(6)(8) 2 45: 24–69 12 1 3.5 245 1194 0.70 0.99

0.24115(24)(07) 0.371(8)(5) 3 50: 14–64 10 1 3.5 245 1194 0.77 0.95

0.24115(25)(07) 0.368(9)(4) 4 50: 10–60 12 1 3.5 245 1194 0.84 0.86

3 The quality of fit value, Q, is defined as the integrated probability distribution of χ2 with d degrees of

freedom, Q ≡
∫

∞

χ2

min

dχ2P(χ2, d), where P (x2, d) = N(x2)d/2−1 exp(−x2/2), with N the normalization

constant. The lower limit of the integration, χ2
min, is the χ2 of the the fit under consideration.
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reduced.
The full set of measurements have been used to generate the fits presented in Table I,

and the correlation functions from configurations nearby in Monte-Carlo time have not been
blocked. Blocking is known to be important, since for correlated configurations, unblocked
correlation functions can lead to underestimates of the true uncertainty. For hadronic quan-
tities, we expect that the ensemble we have used has an auto-correlation time of about
40 Monte-Carlo time-steps [11]. Our calculations have been performed on configurations
separated by only τ = 10. Several different fits were performed to determine the effects of
blocking on our multi-exponential fits, the results of which are collected in Table II. To
normalize these fits, a fitting interval, with a range of R = 30, was determined from the
Nexp = 3 exponential fits. For these fits, the blocking time τblock has no detectable impact
on either the statistical or systematic uncertainties (τblock = 1 corresponds to no blocking,
while τblock = 10 corresponds to blocking every 10 configurations).

TABLE II: Effects of blocking on the determination of the ground state Ξ mass.

btM Nexp R: tmin, .., tmax Nsuc τblock ξeff Nsrc Ncfg χ2/dof Q

0.24113(25)(36) 3 30: 14–44 17 1 3.5 245 1194 0.84 0.79

0.24130(30)(09) 3 30: 14–44 15 2 3.5 245 1194 0.83 0.81

0.24123(33)(31) 3 30: 14–44 21 5 3.5 245 1194 0.91 0.67

0.24139(34)(34) 3 30: 14–44 11 8 3.5 245 1194 1.1 0.35

0.24063(25)(36) 3 30: 30–60 2 10 3.5 245 1194 0.93 0.62

The range of time used in the fits also plays an important role in minimizing the uncer-
tainty. The resulting fits for short and long time-ranges used in three and four exponential
fits are shown in Table III. While the range does not have a significant impact on the statis-
tical uncertainty, it does significantly reduce the systematic uncertainty in the fit. To have
such long ranges of statistically useful time-slices, the anisotropy ξ = bs/bt, which is 3.5 for
this ensemble, is crucial. We have not performed calculations with a different anisotropy
(including isotropy), but this can be qualitatively studied by constructing correlation func-
tions using only every second or every third time slice, with an effective anisotropy of ξeff =
1.75 and 1.17, respectively. In the lower section of Table III, we display fits of 1, 2 and
3 exponentials to this reduced set of measurements. This reduced anisotropy has a signif-
icant impact on the resulting uncertainties, as compared to Table I. We were unable to
find successful four exponential fits, and the number of successful fits with 1,2 and 3 expo-
nentials has been reduced (beyond the expected factor of 3). Furthermore, the systematic
uncertainty is almost a factor of four larger than with the full set of measurements for the
three-exponential fit.

Finally, the impact of the number of sources, Nsrc and number of configurations Ncfg,
on the uncertainties in the extracted mass of the Ξ has been explored, the results of which
are collected in Table IV. With Nsrc = 50 or Ncfg = 597, the statistical uncertainties with
Nexp = 3 exponential fits are the same as with the full set of measurements.4 However, in
both cases the systematic uncertainty is larger than that of the full set of measurements. The

4 The set of measurements with varying numbers of sources has been constructed by including all configu-

rations which have at least Nsrc = 100.
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TABLE III: Effects of fit range, R and anisotropy, ξeff on the determination of ground state Ξ

mass.

btM Nexp R: tmin, .., tmax Nsuc τblock ξeff Nsrc Ncfg χ2/dof Q

0.24138(33)(44) 1 20: 47–67 16 1 3.5 245 1194 0.50 1.00

0.24108(28)(10) 2 45: 24–69 12 1 3.5 245 1194 0.70 0.99

0.24102(26)(25) 3 24: 20–44 20 1 3.5 245 1194 0.81 0.80

0.24112(26)(15) 4 25: 17–42 15 1 3.5 245 1194 0.94 0.58

0.24113(25)(07) 3 55: 14–69 10 1 3.5 245 1194 0.74 0.98

0.24106(24)(08) 4 60: 9–69 8 1 3.5 245 1194 0.79 0.95

0.24062(49)(29) 1 24: 52,54,...,74 4 1 1.75 245 1194 0.74 0.78

0.24106(51)(34) 2 24: 34,36,...,58 11 1 1.75 245 1194 0.55 0.95

0.24111(25)(30) 3 28: 14,16,...,42 10 1 1.75 245 1194 0.96 0.51

0.24119(37)(30) 1 15: 48,51,...,63 5 1 1.17 245 1194 0.46 0.9

0.24115(46)(14) 2 24: 33,36,...,57 2 1 1.17 245 1194 0.72 0.74

0.24110(21)(24) 3 27: 21,24,...,48 4 1 1.17 245 1194 0.99 0.45

corresponding dependence of more complicated multi-particle observables on the number of
configurations and sources are under investigation.

TABLE IV: Effects of the number of sources, Nsrc and number of configurations, Ncfg on the

determination of the ground state Ξ mass.

btM Nexp R: tmin, .., tmax Nsuc τblock ξeff Nsrc Ncfg χ2/dof Q

0.24304(101)(54) 1 20: 48–68 18 1 3.5 245 120 0.95 0.55

0.24248(64)(24) 1 20: 45–65 22 1 3.5 245 239 0.65 0.96

0.24178(36)(34) 1 20: 43–63 17 1 3.5 245 597 0.66 0.95

0.24110(37)(13) 3 40: 16–46 8 1 3.5 245 239 0.99 0.50

0.24134(24)(17) 3 50: 22–72 16 1 3.5 245 597 0.72 0.98

0.24309(162)(137) 1 20: 43–63 24 1 3.5 1 1025 1.07 0.35

0.24075(129)(44) 1 20: 52–72 24 1 3.5 10 1025 0.72 0.91

0.24063(45)(56) 1 20: 46–56 20 1 3.5 50 1025 0.72 0.91

0.24088(39)(48) 1 20: 46–56 17 1 3.5 100 1025 1.00 0.47

0.24174(72)(60) 3 50: 11–61 13 1 3.5 1 1025 1.10 0.24

0.24116(38)(22) 3 50: 15–65 13 1 3.5 10 1025 0.87 0.81

0.24108(28)(15) 3 50: 15–65 8 1 3.5 50 1025 0.94 0.64

0.24115(30)(04) 3 50: 20–70 3 1 3.5 100 1025 1.15 0.15

0.24138(33)(44) 1 20: 47–67 16 1 3.5 245 1194 0.50 1.00

0.24115(24)(07) 3 50: 14–64 10 1 3.5 245 1194 0.77 0.95

For multi-exponential fits, it appears that the most important feature in controlling the
uncertainty the ground state is the number of exponentials with which a successful min-
imization can be performed. Neither the statistical nor systematic uncertainties improve
beyond the inclusion of three exponentials in the fits. To have confidence in the Nexp = 3
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FIG. 8: The mass of the Ξ (upper panel) and N (lower panel) extracted from multi-exponential

fits as a function of the tmin used in the fit.
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exponential fits, the anisotropy is found to be essential. A quantitative exploration of the
effects of the anisotropy on the stability of multi-exponential fits is desirable, but this would
be a very costly numerical endeavor. With three or more exponentials, the fitting range,
number of sources and number of configurations have essentially the expected effect on the
statistical (and systematic) uncertainties.

B. Generalized Effective Mass Plots

Correlation functions on an ensemble of configurations of infinite extent in the time-direction
become dominated by a single exponential at large times with an argument that is the energy
of the ground state of the system,

C(t) =

∞
∑

n=0

Zn e−Ent → Z0 e−E0t . (8)

It is conventional to define the effective mass (EM) from the logarithm of the ratio of the
correlation function on adjacent time-slices. It is also possible 5 to form a more general EM
from time-slices separated by tJ > 1

Meff,tJ(t) =
1

tJ
log

(

C(t)

C(t + tJ)

)

→ E0 . (9)

For exponentially decreasing signals with time-independent noise, this will naturally reduce
the statistical uncertainty in the EM and improve the extraction of energy-eigenvalues as it
increases the “lever-arm” of the exponential. In such a case, the uncertainty in Meff(tJ)
in Eq. (9) will decrease as 1/tJ . Simple correlation functions involving π’s have time-
independent uncertainties, but this is not the case for baryonic correlation functions, whose
relative uncertainties grow exponentially with time. We explore the improvements to baryon
EMs, and ultimately the extraction of baryon masses and the energy-eigenvalues in the vol-
ume, that result from tJ > 1. In fitting an energy to an EM (and other generalizations),
either the Bootstrap or Jackknife procedures are used to generate the covariance matrix
associated with the time-slices in the range of the fit.6 This covariance matrix is then used
to form the χ2/dof, which is minimized to determine the energy, and then explored to de-
termine the uncertainty in this energy. The statistical uncertainty is obtained by finding
values of the fit parameters where the χ2 function attains a value of χ2

min + 1.
To demonstrate the impact of tJ > 1 for baryon EMs, we examine the smeared-smeared

correlation function of the Ξ-baryon. Figure 9 shows the EMs obtained with tJ = 1 (left
panel) and tJ = 10 (right panel). The scatter of the effective mass from time-slice to
time-slice is significantly reduced with tJ = 10 compared with tJ = 1, allowing for a clear
identification of the time range over which it is reasonable to extract the (ground-state)
mass of the Ξ. Therefore, the systematic uncertainty associated with the fitting range in

5 This was suggested by K. Juge in a talk at Lattice 2008, see Ref. [19], but may have been used earlier.
6 In the Bootstrap method, Nboot = Ncfg randomly generated bootstrap samples are used after blocking

over sets of five configurations, while the Jackknife ensembles are constructed by single omission after

blocking over 10 configurations. We have found consistent results using both methods and by using

different blockings and values of Nboot.
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FIG. 9: The left panel shows the conventional EM (tJ = 1) from the smeared-smeared Ξ correlation

function, and the right panel shows the EM for the same correlation function with tJ = 10.

the EM is reduced. The statistical uncertainty in the mass of the Ξ extracted from the EMs
with the two different values of tJ , when fit over the time time-slice interval, are however
very similar, as can be seen in the resulting fits to time-slices t = 48 to t = 58,

M tJ =1
Ξ = 0.24087 ± 0.00057± 0.00080 , χ2/dof = 0.68 ,

M tJ =10
Ξ = 0.24060 ± 0.00061± 0.00060 , χ2/dof = 0.44 . (10)

The first uncertainty corresponds to the statistical uncertainty in the mass determined from
the χ2/dof minimization, while the second corresponds to systematic uncertainty associated
with the fitting interval. The systematic uncertainty of this fit is determined by varying the
fitting interval at each end by 0,±1,±2 time-slices, performing a χ2/dof minimization over
each interval and taking half of the spread of the extracted masses. Alternative procedures
such as using fits to rolling windows of time-slices within the fitting interval return similar
uncertainties.

It is interesting to explore how different values of tJ modify the form of the covariance
matrix that is input into the χ2/dof minimization. The covariance matrices associated with
the time-interval t = 48 to t = 51 from these two EMs are shown in Eq. (11). They are quite
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different, with the distant off-diagonal elements becoming more significant for increasing tJ .

σ2
tJ=1 = 10−7











4.82 1.97 2.71 2.70

1.97 6.21 3.03 3.15

2.71 3.03 7.83 3.35

2.70 3.15 3.35 7.06











, σ2
tJ =10 = 10−7











4.75 5.09 5.29 5.26

5.09 5.65 5.92 5.96

5.29 5.91 6.41 6.48

5.26 5.96 6.48 6.90











.(11)

In this comparison, it is important to note that the two extractions make use of different
parts of the correlation function. The tJ = 1 fit uses five time-slices, while the tJ = 10 fit
uses eight well-separated time-slices.
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FIG. 10: The left panel shows the conventional EM (tJ = 1) from the smeared-point Ξ correlation

function, and the right panel shows the EM for the same correlation function with tJ = 10.

The EMs from the smeared-point Ξ correlation functions with tJ = 1 and tJ = 10
are shown in fig. 10. The scatter in the EM for tJ = 1 is substantially less than for the
smeared-smeared correlation function, as the overlap of the interpolating operator onto the
ground-state is larger. However, the overlap onto excited states is even larger, and the
ground state component of the correlation function does not become dominant until later
times, increasing the fitting systematic uncertainty in the extraction of the ground-state
mass.
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C. Prony’s Method/Linear Prediction

As the signal-to-noise ratio of baryon correlation functions degrades exponentially with time,
it is important to extract the ground-state signal (or excited state signal if that is the state
of interest) from a range of time-slices starting at the earliest possible time. Significant effort
has been placed into determining interpolating operators that maximize the overlap onto the
ground-states of the baryons in order to facilitate this. Further, there has been significant
effort put into using the variational method [20, 21], for which the correlation functions
resulting from a number of hadronic interpolating operators are diagonalized on each time-
slice to give the eigen-energies with the appropriate quantum numbers. A few years ago,
Fleming suggested that generalizing the EM-method to two or more exponential functions
might be useful in LQCD analysis based on findings of NMR spectroscopists [22] 7. At that
time, we explored this method with sets of correlation functions that were available to us at
that time, and found the method was quite unstable to the statistical fluctuations in those
measurements. More recently, Lin and Cohen [25] compared this method favorably to the
variational approach. Given the small statistical uncertainties in the correlation functions
we are presently considering, and the reduction in the systematic uncertainties achieved with
tJ > 1, we return to explore this method.

In LQCD, two-point correlation functions have the form

G(t) = A0e
−α0t + A1e

−α1t + ... + Ak−1e
−αk−1t + . . . , (12)

where t denotes the time-slice (time-slices are implicitly taken to be evenly-spaced). It
follows from Eq. (12) that

G(t + nk) + Ck−1 G(t + n(k − 1)) + Ck−2 G(t + n(k − 2)) + .. + C0 G(t) = 0 , (13)

where the integer n is the generalization of tJ to the case of a multi-exponential function.
In order to determine the k coefficients Ci, k equations are required to be formed from the
measured correlation function. Given the Ci, the roots of

(

e−nα
)k

+ Ck−1

(

e−nα
)k−1

+ Ck−2

(

e−nα
)k−2

+ .. + C0 = 0 , (14)

and in particular the α’s, provide the energies of the states contributing to the correlation
function.

1. One Exponential : The Standard Effective Mass

In the case of k = 1, where the correlation function is assumed to be a single exponential,
and taking n = 1,

G(t + 1) + C0 G(t) = 0 ,
(

e−α
)

+ C0 = 0 , (15)

and the usual expression for the EM follows trivially.

7 The method is more generally referred to as Prony’s method [23] after Gaspard Riche de Prony who first

constructed it in 1795 [24]. These techniques and other related methods are known as linear prediction

theory in the signal analysis community.
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2. Two Exponentials

In the case of two exponentials in the correlation function, the most general pair of
equations that can be used to extract the two effective masses is

G(t + 2n) + C1 G(t + n) + C0 G(t) = 0

G(t + 2n + q1) + C1 G(t + n + q1) + C0 G(t + q1) = 0 , (16)

where q1 is an arbitrary integer off-set between the two equations. Inserting the values of the
calculated correlation function allows for an extraction of C0,1 on each time-slice, j. These
coefficients are then inserted into

(

e−nα
)2

+ C1

(

e−nα
)

+ C0 = 0 , (17)

to recover a numerical values of the e−nα. By choosing n = m = 1, the expressions of
Fleming [22] are recovered. In order to optimize the two-exponential extraction, a search
over values of the pair (n, q1) must be performed. A further systematic uncertainty can be
assigned from this choice.

The ground-state extracted from the smeared-smeared Ξ correlation function with n =
q1 = 5 is shown in fig. 11. It is clear that the ground-state signal can be isolated from
the correlation function for a large number of time-slices, many more than using the single
exponential EM (fig. 9) alone. We have shown the fit to the ground-state result between
time slices t = 30 and t = 60. The lower-limit of the time interval was chosen to be within
an interval for which χ2/dof < 1. Extending the fit interval to lower time-slices gradually
increases the χ2/dof, as shown in the right panel of fig. 11, indicating contamination from
higher energy states. The upper-limit of the fitting interval was chosen to be in the region
for which backward propagating states (due to the anti-periodic BC’s in the time-direction)
were not visible in the EM (or in the χ2/dof). The ground-state Ξ mass we extract from
this 2-exponential analysis is

MΞ = 0.24109 ± 0.00043 ± 0.00057 , χ2/dof = 0.38 , (18)

where the first uncertainty is statistical and the second is the fitting systematic (as de-
fined previously). The statistical uncertainty in the 2-exponential extraction is significantly
smaller than that obtained from the one-exponential analysis (Eq. (10)). This is due to the
substantially increased number of time-slices in the ground-state plateau in the generalized
EM.

One aspect of this method that is less appealing is the ambiguity in the association
of the two roots that result from Eq. (17) to the two states on different time-slices and
on different jackknife/bootstrap ensembles. This (mis-)identification issue is the cause of
the anomalously large uncertainties at time-slices 31,. . . ,36 in fig. 11 - this should not be
interpreted as variance of the signal for the ground state. Additionally, on different time-
slices and jackknife/bootstrap ensembles, this method can, and likely will, select different
terms in Eq. (12) particularly for the sub-dominant excited state, adding additional artificial
variance to the signals for particular energy eigenstates. Consequently, the extracted second
state is not physically meaningful.
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FIG. 11: The left panel shows the ground-state extracted from the smeared-smeared Ξ correlation

function with a 2-exponential Prony determination with n = q1 = 5, and the correlated fit to the

time-slices between t = 30 and t = 60. The inner (darker) region corresponds to the statistical

uncertainty, while the outer (lighter) region corresponds to the statistical and fitting systematic

uncertainties combined in quadrature. The right panel is the χ2/dof for fits between time-slices

t = tmin and t = 60.

3. Three and More Exponentials

The generalization of the method to arbitrary numbers of exponential functions is
straight-forward. In the case of three exponentials, inserting the values of the calculated
correlation functions,

G(t + 3n) + C2 G(t + 2n) + C1 G(t + n) + C0 G(t) = 0

G(t + 3n + q1) + C2 G(t + 2n + q1) + C1 G(t + n + q1) + C0 G(t + q1) = 0

G(t + 3n + q2) + C2 G(t + 2n + q2) + C1 G(t + n + q2) + C0 G(t + q2) = 0 ,(19)

with q1 6= q2 6= 0 allows for an extraction of C0,1,2 on each time-slice, t. Again, these
coefficients can be extracted uniquely in terms of the G(t) due to the fact that the system
is linear. These coefficients C0,1,2 are then inserted into

(

e−nα
)3

+ C2

(

e−nα
)2

+ C1

(

e−nα
)

+ C0 = 0 , (20)

24



to recover a numerical value of e−nα. Analysis of a given correlation function involves
searching for the values of the triplet (n, q1, q2) that optimizes the extraction (in each equality
in Eq. (19), different n can be used). In this case, statistical fluctuations occasionally result
in complex roots of Eq. (20) on a particular Jackknife or Bootstrap ensemble. At present,
we simply omit these contributions in our analysis. Such complex roots correspond to
an oscillatory solution and arise from short distance noise in the correlation function (or
nearly degenerate states in the spectrum), and are a well-known issue with the simple Prony
method. More advanced methods [26] can mitigate this issue, but do not result in improved
extractions of the ground-state so we do not discuss them in detail.

The ground-state energy extracted from the smeared-smeared Ξ correlation function with
n = 10, q1 = 3, q2 = 6 is shown in fig. 12. It is clear that the ground-state signal is extractable
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FIG. 12: The left panel shows the ground-state extracted from the smeared-smeared Ξ correlation

function with a 3-exponential Prony determination with n = 10, q1 = 3, q2 = 6, and the correlated

fit to the time-slices between t = 10 and t = 52. The inner (yellow) region corresponds to

the statistical uncertainty, while the outer (red) region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature. The right panel is the χ2/dof for fits between

the time-slices t = tmin (the horizontal axis) and t = 52.

from time-slices even closer to the source than with two-exponential analysis. In fig. 12, the
fit to the ground-state between time slices t = 10 and t = 52 is shown. The extracted mass
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is

MΞ = 0.24124 ± 0.00032 ± 0.00034 , χ2/dof = 0.22 , (21)

with the statistical uncertainty being slightly less than in the two-exponential analysis. It
is important to realize that this level of precision corresponds to a statistical uncertainty of
∼ 2 MeV in the Ξ mass.

We have successfully applied the four- and five- state Prony method to our data but no
improvement is seen beyond the three-exponential extractions.

D. Multi-Correlation Function Prony Method

There are a number of extensions of the Prony method that exist in the literature (see for
example [26]), some of which we have investigated in detail. For the correlation functions we
have in hand, these extensions do not significantly improve on the standard Prony method.
Typically, these methods are applied in cases where only a single set of measurements is
available. However, we have two sets of correlation functions (smeared-smeared and smeared-
point) whose energy spectra are identical in the limit of a large number of configurations.
It is straight forward to generalize Prony’s method to include both correlation functions–
the matrix-Prony method. This form leads to a further reduction in the uncertainty of
the extraction of the energy eigenvalues. A similar approach, has been briefly discussed
in Ref. [27].

Assume we have N (N = 2 in our case) correlation functions from which we want to
extract the energy levels. If these correlation functions are a sum of exponentials they
satisfy the following recursion relation,

My(τ + tJ) − V y(τ) = 0 , (22)

where M and V are N × N matrices and and y(t) is a column vector of N components
corresponding to the N correlation functions. Eq. (22) implies then the correlation functions
are

y(t) =
N

∑

n=1

Cnqnλt
n , (23)

where qn and λn = exp(mntJ) the eigenvectors and eigenvalues of the following generalized
eigenvalue problem

Mq = λV q . (24)

Given the N sets of correlation functions, the masses can be found by determining the
matrices M and V that are needed in order for the signal to satisfy Eq. (22). Solving
Eq. (24), then leads to the eigenvalues λn = exp(mntJ) and the eigenvectors qn needed
to reconstruct the amplitudes each exponential enters the correlation functions. A simple
solution can be constructed as follows. First note that

M

t+tW
∑

τ=t

y(τ + tJ)y(τ)T − V

t+tW
∑

τ=t

y(τ)y(τ)T = 0 . (25)

Clearly, a solution for M and V is

M =

[

t+tW
∑

τ=t

y(τ + tJ)y(τ)T

]−1

, V =

[

t+tW
∑

τ=t

y(τ)y(τ)T

]−1

, (26)
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where these inverses exist provided that the range, tW , is large enough to make the matrices
in the brackets full rank (tW ≥ N−1). In our case with two exponentials the range has to be
two for achieving full rank. Once the eigenvalues, λn and eigenvectors qn are determined, the
amplitudes, Cn, can be reconstructed using t as a normalization point. The shift parameter
tJ can be used it improve stability if this is used in conjunction with tW . The above solution
is equivalent to determining M and V by requiring that

Ψ2 =

t+tW
∑

τ=t

[My(τ + tJ) − V y(τ)]T [My(τ + tJ) − V y(τ)] (27)

is minimized.
To go beyond extracting two states, one can construct and solve a second order recur-

sion relation. The minimization condition of Eq. (27) augmented to contain the second
order terms in the recursion, can be used to determine the unknown matrices. The result-
ing eigenvalue problem a second order nonlinear generalized eigenvalue problem which is
straightforward to solve. However, to isolate the ground-state, which is our present focus,
the two state model is sufficient and we do not pursue this further.

To demonstrate how this method works, we return to Ξ correlation function discussed
above. Figure 13 shows the generalized EMP for the Ξ mass as a function of time determined
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FIG. 13: The generalized EMP for the mass of the Ξ using a Matrix-Prony analysis with tJ = 7 and

tW = 11, and the correlated fit to the time-slices between t = 11 and t = 50. The inner (darker)

region corresponds to the statistical uncertainty, while the outer (lighter) region corresponds to

the statistical and fitting systematic uncertainties combined in quadrature. The inset shows both

states extracted with the matrix-Prony method.

27



with a N = 2 matrix-Prony extraction, using both the smeared-smeared and smeared-point
correlation functions. The inset shows the second extracted state in addition to the ground
state. The extracted value of the Ξ mass, determined by fitting in the time interval t = 11
to t = 50, is

MΞ = 0.24097 ± 0.00025 ± 0.00003 , χ2/dof = 0.81 , (28)

The EM of the dominant state in fig. 13 plateaus around time-slice t = 10, and is well-
defined over a large interval. In addition to being somewhat more visually appealing than
the previous Prony analyses of single correlation functions, this method provides the smallest
uncertainties, particularly for the fitting systematic.

In our final extractions of baryon masses, our EM analysis will use the matrix-Prony
method. This method yields ground state energies that are in complete agreement with those
from the other methods discussed. The generalized EMs from the matrix-Prony method
are consistently clean, and the quality of fits are uniformly good for the ground state.
Since they involve only one fit parameter, one can easily assess the quality of the fits.
The procedure for fitting parameters and determining their statistical uncertainty has been
described in Section IVB. Systematic uncertainties are calculated by performing fits over
rolling windows of time-slices within the quoted overall range and looking at the standard
deviation of the central values of those fits. This is combined in quadrature with a further
systematic uncertainty that is generated by sampling a large range of possible values of tJ
and tW and taking the standard deviation of the central values of the resulting fits. The
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FIG. 14: The generalized EMP for the mass of the Ξ using a Matrix-Prony analysis for a variety

of values for tJ and tW .

generalized EMP for the Ξ extracted with the matrix-Prony method for a variety of values
of tW and tJ can be seen in fig. 14.
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E. Prony-Histograms

In extracting the energies of the states through the Prony procedure, a set of roots are
produced on each time-slice for each member of the Bootstrap or Jackknife ensemble. In
general these roots are real and there is an ambiguity in associating the roots with energy-
levels in the finite volume (only the single particle masses are approximately known). In
order to aid identification of energy-levels it is useful to form histograms of the complete
set of roots generated through the Bootstrap procedure. The simplest histogram is formed
by accumulating all of the roots obtained on a sub-set of, or all of, the time-slices over all
bootstrap/jackknife ensembles. The dominant components of the correlation function will
appear as well-defined peaks in the histogram.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

bt MX

FIG. 15: The histogram of the positive roots extracted from time-slices t = 11 to t = 50 from

N = 2 matrix-Prony analysis of the Ξ correlation functions, with tJ = 7 and tW = 11.

In most cases, this histogramming procedure produces very similar results when either
two, three or four exponential Prony, or matrix-Prony analyses are used. Only atypically do
the higher exponential analyses reveal a clean state that is not present in the two-exponential
analysis. Additionally, since our baryon correlation functions are asymmetric in time because
of the parity projectors used in Eq. (2), noise is reduced in these histograms by separately
accumulating the roots over the two half configuration. As expected, the excited states have
a larger presence in the smeared-point correlation function. An example histogram is shown
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in Fig. 15, corresponding to the Ξ correlation function analyzed in fig. 13. There is one
clear peak in the histogram, corresponding to the Ξ ground-state and one broad structure
at higher mass, which the histogram suggests is likely to be a collection of closely spaced
states that currently are not resolvable. This interpretation of the excited state is consistent
with expectations for the Ξ spectrum and with the instability of the extractions of the first
excited state in the exponential fits discussed earlier.

V. MESON SPECTRUM

The π+ correlation functions do not suffer from exponential signal-to-noise degradation for
configurations of infinite temporal extent (in Section VIII, we will find that this is not true
for a finite time-direction even for the pion). As a result, they can be calculated with small
statistical uncertainty on each time-slice, as shown in fig. 16. As the EM for the π+ does
not exhibit a plateau, the π+ mass is determined by fitting cosh

(

Mπ(t − T
2
)
)

to a (large)
number of time-slices of the correlation function. Performing a double cosh fit to time-slices
t = 21 to t = 41 yields

Mπ = 0.06936 ± 0.00012 ± 0.00005 , χ2/dof = 0.73 , (29)

where the first uncertainty is statistical and the second is fitting systematic. The statis-
tical uncertainty in the mass is determined with the Jackknife procedure, and the fitting
systematic is determined by varying the fitting interval over a reasonable range.

The second set of peaks that are visible in the histogram are at an energy consistent
with the I = 1 KKπ state (with a threshold at Mπ + 2MK ∼ 0.2636) that can couple to
the source that produces a single π+. With even greater statistics, the energy of this state
could calculated with enough precision to extract the I = 1

2
Kπ and I = 0 KK scattering

lengths and the I = 1 KKπ three-body interaction. An expression for the energy-levels of
this system in a finite volume in terms of the KK and Kπ scattering amplitudes and various
three-body interactions has recently been derived [28] and would be useful in analyzing this
state. There is no clear peak that can be associated with I = 1 πππ, which one would
naively thought would have been present. It must be the case that the source does not
couple with any appreciable strength to this state.
The EM associated with the smeared-point kaon correlation function is shown in fig. 17,
along with the bootstrap-Prony histogram. Despite the appearance of the EM, no plateau
is found in the EM, and the kaon mass is extracted by fitting cosh

(

MK(t − T
2
)
)

to a number
of time-slices of the correlation function. Performing a double cosh fit over the time-slices
between t = 29 and t = 49, yields a K+ mass of

MK = 0.097016 ± 0.000099± 0.000033 , χ2/dof = 1.01 . (30)

The excited state(s) that are seen in the histogram in fig. 17 are consistent with the I = 1
2

KKK. A better measurement of this state, in analogy with the pion correlation function,
would allow for a determination of the I = 0 KK scattering amplitude.

VI. GROUND-STATE BARYON SPECTRUM

With the methodology we have presented in Section IV, we are in a position to extract
the masses of the lowest-lying octet baryons. The Ξ correlation functions have been used
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FIG. 16: The upper panel shows the EM for the smeared-point π+ correlation function, while the

lower panel shows the associated matrix-Prony histogram.
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FIG. 17: The upper panel shows the EM for the smeared-point K+ correlation function, while the

lower panel shows the associated Prony histogram.
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extensively to demonstrate the strengths and weaknesses of the various methods, with the
resulting mass extraction given in Eq. (28), and we do not repeat that discussion here.

The matrix-Prony method applied to the smeared-smeared and smeared-point correla-
tions functions associated with the Σ, Λ and N produces the Prony-histograms and general-
ized EMs shown in fig. 18, fig. 19, and fig. 20. Fitting the Σ EM between time-slices t = 12
to t = 47 yields Σ mass,

MΣ = 0.22811 ± 0.00028 ± 0.00018 , χ2/dof = 0.77 . (31)

Fitting the Λ EM between time-slices t = 12 to t = 52 yields Λ mass,

MΛ = 0.22255 ± 0.00028 ± 0.00005 , χ2/dof = 1.21 . (32)

Finally, fitting N the EM between time-slices t = 11 to t = 40 yields N mass,

MN = 0.20682 ± 0.00032 ± 0.00010 , χ2/dof = 1.5 . (33)

The results of the best extractions of the ground-state baryon masses using multi-
exponential fitting and the matrix-Prony method, which give consistent results for each
species of baryon, are collected in Table V. These results are completely consistent within
their uncertainties, giving us confidence that our extractions are correct.

TABLE V: The ground-state masses of the Jπ = 1
2
+

baryons extracted by fitting four exponentials

and by the matrix-Prony method. The first uncertainty is statistical while the second is the fitting

systematic.

Exponential Fitting Matrix-Prony

state btM range χ2/dof Q btM range χ2/dof

N 0.20693(33)(07) 7–64 0.72 0.99 0.20682(32)(10) 11–40 1.50

Λ 0.22265(25)(16) 9–64 0.89 0.78 0.22255(28)(5) 10–47 1.21

Σ 0.22819(25)(07) 8–64 0.85 0.86 0.22811(28)(18) 12–47 0.77

Ξ 0.24112(21)(06) 7–64 0.84 0.87 0.24097(25)(3) 11–50 0.81

VII. NEGATIVE-PARITY EXCITED BARYON STATES

The interpolating operators that produce even-parity baryons moving forward in time also
produce negative-parity partners moving backwards in time. As the interpolating operators
couple to continuum states such as Nπ, it is possible that, by using Lüscher’s method
(and ideally, multiple spatial volumes), the phase-shifts for meson-baryon scattering can be
extracted in channels with contributions from disconnected diagrams.

In addition to excited single baryon states, and the continuum states that carry zero units
of momentum in the volume, there are also continuum states where each hadron carries one
or more units of momentum in the volume, while having vanishing total momentum. The
lowest energy state containing hadrons A and B with back-to-back momenta ±p = ±2π

L
n

(where n is an integer triplet) occurs at

E
|n|
AB =

√

M2
A +

(

2π|n|
Lξt

)2

+

√

M2
B +

(

2π|n|
Lξt

)2

. (34)
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FIG. 18: The upper panel shows the generalized EM for the mass of the Σ using a Matrix-Prony

analysis with tJ = 9 and tW = 17, and the correlated fit to the time-slices between t = 12 and

t = 47. The inner (darker) region corresponds to the statistical uncertainty, while the outer (lighter)

region corresponds to the statistical and fitting systematic uncertainties combined in quadrature.

The inset show the same ground-state EM plot along with that of the excited state (light points).

The lower panel shows the associated Prony histogram of the positive roots for the time-slices

t = 12 to t = 47. 34
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FIG. 19: The upper panel shows the generalized EM for the mass of the Λ using a Matrix-Prony

analysis with tJ = 9 and tW = 11, and the correlated fit to the time-slices between t = 10 and

t = 47. The inner (darker) region corresponds to the statistical uncertainty, while the outer (lighter)

region corresponds to the statistical and fitting systematic uncertainties combined in quadrature.

The inset show the same ground-state EM plot along with that of the excited state (light points).

The lower panel shows the associated Prony histogram of the positive roots for the time-slices

t = 10 to t = 47. 35
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FIG. 20: The upper panel shows the generalized EM for the mass of the N using a Matrix-Prony

analysis with tJ = 7 and tW = 2, and the correlated fit to the time-slices between t = 11 and t = 40.

The inner (darker) region corresponds to the statistical uncertainty, while the outer (lighter) region

corresponds to the statistical and fitting systematic uncertainties combined in quadrature. The

inset show the same ground-state EM plot along with that of the excited state (light points). The

lower panel shows the associated Prony histogram of the positive roots for the time-slices t = 11

to t = 40. 36



In attempting to unravel the spectrum of states contributing to the correlation functions,
we must also consider such continuum states.

The lowest-lying negative parity state that is expected to couple to the interpolating
operator for the single nucleon is the s-wave Nπ state (more precisely, we refer to the A+

1

representation of the hyper-cubic group), which has a threshold, neglecting interactions, of
Mπ +MN = 0.27642±0.00043±0.00028. Fitting the EM shown in fig. 21 between time-slices
t = 93 to t = 119 yields,

ENπ = 0.2861 ± 0.0011 ± 0.0020 , χ2/dof = 0.91 , (35)

significantly above threshold. Therefore, we conclude that this state is an s-wave πN scat-
tering state with isospin I = 1

2
, as it has energy considerably below that of the first mo-

mentum excitation in the volume at E
|n|=1
Nπ = 0.33914 ± 0.00048 ± 0.00029, and the ππN

state. Given that there are no other channels that are energetically allowed for this state
to mix with, the s-wave πN phase-shift8 in this channel can be extracted at an energy of
δEπN = E

N( 1

2

−

)
− MN − Mπ = 0.0095 ± 0.0011 ± 0.0020 (δEπN = 15.3 ± 1.8 ± 3.2 MeV)

where the uncertainties are dominated by the uncertainty in E
N( 1

2

−

)
. It is important to note

that this channel receives contributions from disconnected diagrams, and in the calculation
we are doing, these contributions are completely accounted for in the gauge-configurations.
Using the standard Lüscher procedure, a phase-shift of δπN = −26 ± 7 ± 6 degrees is found
at this energy. The Prony histogram in fig. 21 shows significant structure in this channel,
and one could argue that there is a single level at E ∼ 0.45, but this would require further
exploration.

For the negative-parity state that couples to the interpolating operators for the Λ, the
situation is not so clean. The thresholds for the lowest-lying continuum states, Σπ and
NK, are located at MΣ + Mπ = 0.29757 ± 0.00036 ± 0.00021 and MN + MK = 0.30422 ±
0.00042 ± 0.00027, respectively, in the absence of interactions. The corresponding lowest-

lying states with one unit of momentum occur at E
|n|=1
Σπ = 0.35869± 0.00040± 0.00023, and

E
|n|=1
NK = 0.35797 ± 0.00047 ± 0.00030. Fitting the EM shown in fig. 22 between time-slices

t = 88 to t = 117 yields,

E
Λ( 1

2

−

)
= 0.2983 ± 0.0008 ± 0.0004 , χ2/dof = 1.02 . (36)

This is, within uncertainties, at the threshold for Σπ or NK. The eigenstates will be a
combination of these two systems and it is likely that we have not resolved the two nearby-
states in the EM, and the result in Eq. (36) is actually and average of two closely-spaced
energies.

For the lowest-lying negative-parity state(s) produced by the interpolating operator for
the Σ, the situation is even more complicated. The threshold of the non-interacting s-
wave Σπ state is at MΣ + Mπ = 0.29757 ± 0.00036 ± 0.00021, for the Λπ state is MΛ +
Mπ = 0.29157 ± 0.00040 ± 0.00020, and for the NK state is MN + MK = 0.30422 ±
0.00042 ± 0.00027. Therefore, in this large volume, we expect to observe three eigenstates
that are nearly degenerate. The lowest-lying states with one unit of momentum occur at

E
|n|=1
Σπ = 0.35869 ± 0.00040 ± 0.00023, E

|n|=1
Λπ = 0.35311 ± 0.00045 ± 0.00022, and E

|n|=1
NK =

8 Here we ignore possible contributions from L = 4, 6, . . . partial waves that also contribute in the A+
1

representation of the hyper-cubic group H(4).
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FIG. 21: The upper panel shows the generalized EM for the lowest-lying negative-parity state

coupling to the N-source using a Matrix-Prony analysis with tJ = 5 and tW = 8, and the correlated

fit to the time-slices between t = 93 and t = 119. The inner (darker) region corresponds to the

statistical uncertainty, while the outer (lighter) region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature. The lower panel shows the associated Prony

histogram of the positive roots for the time-slices t = 93 to t = 119.
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FIG. 22: The upper panel shows the generalized EM for the lowest-lying negative-parity state

coupling to the Λ-source using a Matrix-Prony analysis with tJ = 1 and tW = 5, and the correlated

fit to the time-slices between t = 88 and t = 117. The inner (darker) region corresponds to the

statistical uncertainty, while the outer (lighter) region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature. The lower panel shows the associated Prony

histogram of the positive roots for the time-slices t = 88 to t = 117.
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FIG. 23: The upper panel shows the generalized EM for the lowest-lying negative-parity state

coupling to the Σ-source using a Matrix-Prony analysis with tJ = 7 and tW = 2, and the correlated

fit to the time-slices between t = 95 and t = 118. The inner (darker) region corresponds to the

statistical uncertainty, while the outer (lighter) region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature. The lower panel shows the associated Prony

histogram of the positive roots for the time-slices t = 95 to t = 118.
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0.35797 ± 0.00047 ± 0.00030 and are well separated from the n = 0 states. Fitting the EM
shown in fig. 23 between time-slices t = 95 to t = 118 yields,

E
Σ( 1

2

−

)
= 0.3068 ± 0.0011 ± 0.0011 , χ2/dof = 0.80 , (37)

in the region where one expects to find three closely-spaced states, corresponding to the
eigenstates dominated by Σπ, Λπ, and NK. Given how closely spaced these states are
expected to be, the extraction in Eq. (37) is likely a complicated average of three energies.

The situation is no better for the lowest-lying negative-parity states that are expected
to couple to the interpolating operator for the Ξ. The lowest-lying s-wave continuum states
are πΞ, ΛK and ΣK. The threshold for these states, in the absence of interactions, are

E
|n|=0

πΞ = 0.31028 ± 0.00036 ± 0.00014, E
|n|=0

KΛ = 0.31937 ± 0.00038 ± 0.00020, and E
|n|=0

KΣ =
0.32537 ± 0.00034 ± 0.00021, respectively. The corresponding states where both hadrons

carry one unit of momentum have thresholds state E
|n|=1
Ξπ = 0.37056 ± 0.00040 ± 0.00016,

E
|n|=1
ΛK = 0.37194 ± 0.00044 ± 0.00023, E

|n|=1
ΣK = 0.37752 ± 0.00039 ± 0.00024, respectively,

Therefore, we expect to observe two sets of three nearly degenerate eigenstates. Fitting the
EM shown in fig. 24 between time-slices t = 91 to t = 118 yields,

E
Ξ( 1

2

−

)
= 0.3243 ± 0.0010 ± 0.0009 , χ2/dof = 0.72 , (38)

in the region where one expects to find three closely-spaced states, corresponding to the
eigenstates dominated by n = 0 Ξπ, ΛK, and ΣK. Given how closely spaced these states
are expected to be, the extraction in Eq. (38) is likely an average of three unresolved energies.
There are hints of a couple of other peaks in the Prony-histogram, but nothing conclusive.

The results of the best extractions of the ground-state baryon masses using multi-
exponential fitting and the matrix-Prony method, which give consistent results for each
species of baryon, are collected in Table VI.

TABLE VI: The masses of the lowest-lying Jπ = 1
2

−
states with unit baryon number extracted

by fitting three exponentials and by the matrix-Prony method. The first uncertainty is statistical

while the second is the fitting systematic.

Exponential Fitting Matrix-Prony

state btM range χ2/dof Q btM range χ2/dof

N(1
2

−
) 0.2871(18)(10) 90–117 1.11 0.28 0.2861(11)(20) 93–119 0.91

Λ(1
2

−
) 0.2954(05)(15) 90–113 0.89 0.64 0.2983(8)(4) 88–117 1.02

Σ(1
2
−
) 0.3074(15)(15) 90–118 1.02 0.41 0.3068(11)(11) 95–118 0.80

Ξ(1
2

−
) 0.3261(09)(15) 89–115 1.07 0.36 0.3243(10)(9) 91–118 0.72

VIII. SIGNAL-TO-NOISE RATIOS

Many observables of importance to particle physics that are currently being calculated with
LQCD, such as the pion decay constant and the Gasser-Leutwyler coefficients, require the
calculation of mesonic correlation functions. Statistical fluctuations on each time-slice of
these correlation function are well-behaved. In contrast, as argued by Lepage [10], correlation
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FIG. 24: The upper panel shows the generalized EM for the lowest-lying negative-parity state

coupling to the Ξ-source using a Matrix-Prony analysis with tJ = 5 and tW = 11, and the correlated

fit to the time-slices between t = 91 and t = 118. The inner (darker) region corresponds to the

statistical uncertainty, while the outer (lighter) region corresponds to the statistical and fitting

systematic uncertainties combined in quadrature. The lower panel shows the associated Prony

histogram of the positive roots for the time-slices t = 91 to t = 118.
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functions involving one or more baryons exhibit exponentially growing statistical noise. In
the case of a single positive parity nucleon, the correlation function has the form

〈θN (t)〉 =
∑

x

Γβα
+ 〈Nα(x, t)N

β
(0, 0)〉 → Z0 e−MN t , (39)

where N is an interpolating field that has non-vanishing overlap with the nucleon and the
angle brackets indicate statistical averaging over measurements on an ensemble of configu-
rations. The variance of this correlation function is

Nσ2 ∼ 〈θ†N(t)θN (t)〉 − 〈θN(t)〉2

=
∑

x,y

Γβα
+ Γγδ

+ 〈Nα(x, t)N
β
(y, t)Nγ(0, 0)N

δ
(0, 0)〉 − 〈θN(t)〉2

→ Z3π e−3Mπt − Z2
N e−2MN t → Z3π e−3Mπt , (40)

and therefore, as Lepage [10] argued, the noise-to-signal ratio behaves as

σ

x
=

σ(t)

〈θ(t)〉 ∼ 1√
N

e(MN− 3

2
Mπ)t . (41)

More generally, for a system of A nucleons, the noise-to-signal ratio behaves as

σ

x
∼ 1√

N
eA(MN− 3

2
Mπ)t . (42)

Therefore, in addition to the signal itself falling as G ∼ e−AMN t, the noise-to-signal associated
with the correlation function grows exponentially, as in Eq. (42).

These arguments are constructed for a system with an infinite time-direction and are
modified in an important way for systems with a finite time-direction with given BCs.
The calculations that are presented in this work have employed anti-periodic BC’s in the
time-direction. With such BCs the positive parity nucleon correlation function in Eq. (39)
becomes

〈θN (t)〉 → ZN e−MN t + ZNπ e+ENπ(t−T ) , (43)

where ENπ is the energy of the lowest-lying negative-parity state in the volume, which, for
this ensemble of configurations, is a continuum nucleon and pion at rest. The arrow denotes
the behavior of the correlation function far from source (in both time-directions). Further,
the correlation function dictating the behavior of the variance of the nucleon correlation
function is modified similarly, with Eq. (40) becoming

Nσ2 → A3π e−
3

2
MπT cosh

(

3Mπ(t − T

2
)

)

+ Aπ e−
3

2
MπT cosh

(

Mπ(t − T

2

)

+ A0 e−MNT + ... . (44)

The first term in Eq. (44) arises from 3π’s propagating forward and 3π’s propagating back-
wards, the second term arises from 2π’s propagating forward along with one π propagating
backward and vice versa, the third (time-independent) term arises from a nucleon prop-
agating forward and a nucleon propagating backward, and the ellipses denotes terms in-
volving larger masses. As the negative-parity state is more massive than the nucleon, the
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nucleon is the dominate component in the correlation function, Eq. (43), for a number of
time-slices beyond the mid-point of the configuration. From this argument, one expects
to see the signal-to-noise ratio degrade even more rapidly than the expectation shown in
Eq. (41) in the time-slices near the mid-point of the configuration where the correlation
function is still dominated by the nucleon. One expects to find regions of the correlation
function, depending on the structure of the source, which have the noise-to-signal scaling as
e(mp−

3

2
Mπ)t, e−

1

2
MπT e(mp−

1

2
Mπ)t, e−MπT e(mp+ 1

2
Mπ)t e−

3

2
MπT e(mp+ 3

2
Mπ)t, and emp(t−T ), or combi-

nations thereof.
The high statistics calculations we are presenting here enables a detailed study of the

behavior of the signal-to-noise ratio associated with the correlation functions formed with
quark propagators generated with anti-periodic BCs. It is useful to form the effective
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FIG. 25: The left panel shows the EM of the smeared-point N correlation function formed with

with tJ = 3. The right panel shows the energy-scale, ES , associated with the growth of the

noise-to-signal ratio, as defined in Eq. (46). The horizontal lines correspond to the energy scales

mp − 3
2Mπ, mp − 1

2Mπ, mp, mp + 1
2Mπ, and mp + 3

2Mπ (from lowest energy to highest energy).

noise-to-signal plot, in analogy with the EMs. On each time slice, the quantity

S(t) =
σ(t)

x(t)
, (45)
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FIG. 26: The left panel shows the EM of the smeared-smeared N correlation function formed with

tJ = 5. The right panel shows the energy-scale, ES , associated with the growth of the noise-to-

signal ratio, as defined in Eq. (46). The horizontal lines correspond to the energy scales mp− 3
2Mπ,

mp − 1
2Mπ, mp, mp + 1

2Mπ, and mp + 3
2Mπ (from lowest energy to highest energy).

is formed, from which the energy governing the exponential behavior can be extracted via

ES(t; tJ) =
1

tJ
log

(S(t + tJ)

S(t)

)

. (46)

If the correlation function is dominated by a single state, and a single energy-scale determines
the behavior of the noise-to-signal ratio, the quantity ES(t; tJ) will be independent of both
t and tJ .

In fig. 25, the full EM of the smeared-point nucleon correlation function is shown (with
tJ = 3), and in fig. 26, the full EM of the smeared-smeared nucleon correlation function
is shown (with tJ = 5). Also shown are the energy-scales associated with the growth of
the noise-to-signal ratio from Eq. (46), with uncertainties generated using the Jackknife
procedure. Considering the smeared-point correlation function in fig. 25, after time-slice
t = 35 or so, the correlation function is dominated by the ground-state nucleon which
persists until time-slice t ∼ 70. Beyond this time-slice the backward propagating negative-
parity Nπ-state becomes dominant. Between time-slices t ∼ 40 and t ∼ 50, the noise-
to-signal ratio is determined by the expectation of mp − 3

2
Mπ. However, after t ∼ 50 the
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signal-to-noise ratio degrades exponentially faster than this, and by t ∼ 65 the relevant
energy-scale is ∼ mp + 1

2
Mπ and increasing with t. Similar behavior is clear in the smeared-

smeared correlation function, for which the nucleon ground state dominates from an earlier
time-slice.

It is clear from this analysis of the noise-to-signal ratio, that the length of the time-
direction of these configurations and resulting thermal states are limiting the precision of
the ground-state nucleon mass determination. This will be even more true for the multiple
baryon correlation functions for which the signal-to-noise degrades exponentially faster than
in the single nucleon correlation functions. Increasing the length of the time direction will
lead to exponential improvement of the correlation function at large times where the nucleon
component dominates the correlation function. It is interesting to note that the coefficients of
the backward propagating contributions to the noise-to-signal ratio are suppressed by powers
of e−

1

2
MπT . On the current configurations with T = 128, in order to reduce the contribution

to the noise from the mp− 1
2
Mπ component by an order of magnitude, the time extent would

need to be increased to T ∼ 192. This will reduce the mp + 1
2
Mπ component by a factor

of ∼ 84 and the mp + 3
2
Mπ component by ∼ 770. Such an increase in the temporal extent

would significantly decrease the statistical uncertainties with which ground-state signals are
extracted.

The noise-to-signal analysis of the Ξ correlation functions is somewhat more complex,
because there are a number of low-lying states which can contribute to the variance. For
the ΞΞ̄ noise correlation function, the lightest intermediate states that can couple to quark-
content ssussu are KKη, ηηπ and ηηη. The full EMs and the ES plots for the smeared-
point and smeared-smeared Ξ correlation functions are shown in fig. 27 and fig. 28. In both
the smeared-point and smeared-smeared Ξ correlation functions, the noise-to-signal ratio is
growing exponentially slower than naive expectations, until about time-slice t ∼ 55. As the Ξ
ground-state dominates the smeared-smeared correlation function beyond t ∼ 40, this allows
for a extraction of the mass with higher precision than expected. This suggests that the noise-
source does not couple to the low-lying mesonic states as strongly as expected, and that more
massive mesonic states are dominating the noise over many time-slices. However, eventually,
for t & 55, the growth of noise overshoots the original Lepage expectation (indicated by the
lowest horizontal line in figs. 27 and 28.

Whilst we are primarily interested in noise in the baryonic sector, it is interesting to
note that the mesonic correlation functions also suffer from similar issues. According to
the above arguments, the pion correlation function on lattices at zero temperature (infinite
temporal extent) will have noise that is independent of time (up to fluctuations) while the
kaon will have noise that grows exponentially with the small energy difference mK − 1

2
mπ −

1
2
mη. However at finite temperature, the noise correlation functions of both systems receive

additional contributions that grow faster than the above expectations. This is shown in
fig. 29.

IX. SCALING WITH COMPUTATIONAL RESOURCES

An important component of our current work is to address the future requirements for
LQCD calculations in nuclear physics, a field characterized by small energy scales in heavy
systems, for example, the 2 MeV binding energy of the ∼ 2 GeV deuteron. In fig. 30, we show
the extracted mass of the π+, K+, N and Ξ as a function of the number of configurations
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FIG. 27: The left panel shows the EM of the smeared-point Ξ correlation function formed with

tJ = 3. The right panel shows the energy-scale, ES , associated with the growth of the noise-to-

signal ratio, as defined in Eq. (46). The horizontal lines correspond to the energy scales mΞ− 3
2mη,

mΞ −MK − 1
2mη, mΞ −mη − 1

2Mπ, mΞ − 1
2mη, mΞ −MK + 1

2mη, mΞ − 1
2Mπ, mΞ, mΞ + 1

2Mπ, and

mΞ + mη − 1
2Mπ (from lowest energy to highest energy).

in the ensemble for both the exponential and matrix-Prony analysis methods. The full set
of measurements performed on each configuration are included, and the fitting intervals are
chosen to optimize the extraction for each ensemble size. In each case, the uncertainty in the
mass is reduced, as expected, with increasing ensemble size, and the mass extracted from
the smaller ensembles tends to be less than that from the larger ensembles. Fig. 31 shows
the fractional uncertainty in the mass of the π+, K+, N and Ξ, associated with the results
in fig. 30, as a function of the number of configurations. An extrapolation can be performed
with a fit to the uncertainties in fig. 31 of the form δM/M = AN b

cfg. The exponents extract
in these fits are -0.55(4), -0.51(3), -0.38(4), -0.67(6) for the π+, K+, N and Ξ, respectively.

The dependence of our results for hadron masses on the number of sources used in the
calculations is explored in fig. 32 where we shows the fractional uncertainty in the mass of
the π+, K+, N and Ξ as a function of the number of sources used on each configuration. In
this figure we use an ensemble of 1025 configurations, those on which we have at least 100
measurements. A simple fit of the form δM/M = AN b

src returns exponents b = −0.03(2),
-0.65(19), -0.41(3), -0.40(6) for the π+, K+, N and Ξ, respectively.
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FIG. 28: The left panel shows the EM of the smeared-smeared Ξ correlation function formed with

tJ = 3. The right panel shows the energy-scale, ES , associated with the growth of the noise-to-

signal ratio, as defined in Eq. (46). The horizontal lines correspond to the energy scales mΞ− 3
2mη,

mΞ −MK − 1
2mη, mΞ −mη − 1

2Mπ, mΞ − 1
2mη, mΞ −MK + 1

2mη, mΞ − 1
2Mπ, mΞ + 1

2Mπ, mΞ, and

mΞ + mη − 1
2Mπ (from lowest energy to highest energy).

The results on this analysis can be simply summarized for baryons (averaging over the
nucleon and Ξ) as

δMB

MB
∼ 1

N0.4
src N0.5

cfg

. (47)

For mesons, a similar scaling is seen, with a somewhat worse scaling with the number of
measurements per configuration in the case of the pion, consistent with the saturation seen in
fig. 3. This functional form enables us to quantify the relative benefit of increasing the num-
ber of sources per configuration compared to increasing the total number of configurations.
The costs involved in this are as follows:

• Gauge configuration generation: The total cost of generating the ensemble of 1194
gauge configurations was 2M JLab-6n cluster node-hours and the production took a
significant amount of wall-clock time. Configuration generation costs scale linearly
with the number of configurations once a Monte-Carlo trajectory has thermalised (in
this case the overhead of thermalisation was approximately 10%). In order to generate
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FIG. 29: The energy scale, ES , associated with the growth of the noise-to-signal ratio in the π+

(left) and K+ (right) smeared-smeared correlation functions using tJ = 3. The horizontal lines

correspond (from lowest to highest) to 0, Mπ for the pion and MK − 1
2mη − 1

2mK for the kaon.

significantly larger ensembles (containing 104 or 105 gauge fields) in a reasonable wall-
clock time, it will be necessary to run multiple trajectories in parallel. Given wall-clock
time and memory constraints, an individual trajectory will produce O(1000) gauge-
field configurations that are useful for measurements. Consequently the thermalization
overhead will conservatively remain at about 10%. Each configuration requires ∼
2 × 103 JLab-6n node-hours to produce.

• Measurement calculations: The total cost of computing all of the measurements per-
formed in this work was 7 × 106 Jlab-6n node-hours. The cost to generate the 245
light-quark and strange-quark propagators per configuration on the 1194 configura-
tions in this ensemble was ∼ 3M Jlab-6n node-hours, while the cost to generate the
baryon and meson blocks (used at intermediate stages of the calculations) was ∼ 3.5M
Jlab-6n node-hours. Contracting the blocks to accomplish the desired measurements
(one, two, ... baryons, one, two,... mesons and so forth) cost ∼ 0.5M Jlab-6n node-
hours. If propagators on a given configuration are computed in sets of 100, the initial
overhead of constructing deflation vectors in the EigCG algorithm becomes negligible
(at the 1% level) and can be eliminated for further sets of calculations by storing the
eigenvector information. On typical machines, each set of propagators and associ-
ated hadron blocks (technically, not an efficient way to calculated the single hadron
spectrum, but critical for two and more hadron calculations) requires 22 JLab-6n
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FIG. 30: The extracted masses of the π+, K+, N and Ξ as a function of the number of configurations

(with the full set of measurements performed on it). Statistical and systematic uncertainties have

been combined in quadrature. For the baryon states, both the matrix-Prony and exponential fits

are shown.

node-hours to produce.

• Anisotropy: The anisotropy of the lattices used in our calculations proved useful in re-
ducing systematic errors in our fits (see Table III), providing approximately a 1/

√

ξeff

reduction. However, the cost of producing gauge-field configurations and propagators
scales as approximately ξ2 for the same physical extent (one power arises from the ad-
ditional time-slices and one power arises from the worsening condition number of the
Dirac operator). Comparing these exponents, we would conclude that using anisotropic
configurations is not ideal. However for more complicated multi-hadron systems where
useful fit ranges are much reduced in physical units, the anisotropy will likely prove
to be very useful. This remains to be investigated further in subsequent studies.

Using this information and the scalings in Eq. (47), we can address the question of how much
computation is required to achieve a particular level of statistical precision. At present this is
only possible in the single baryon sector; ongoing analyses will address the B > 1 in the near
future. To obtain ∼ 0.1% determinations of the ground-state baryon masses (calculating
the nucleon mass at the ∼ 1 MeV-level), an increase in the number of configurations by
approximately a factor of four or of the number of measurements per configuration by a
factor of 5.6 is required. This can be achieved either by performing more measurements on
the existing set of configurations (∼ 1100 additional measurements on 1200 configurations:
30 M JLab-6n node-hours) or by generating an additional configurations and performing
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FIG. 31: The fractional uncertainty in the extracted masses of the π+, K+, N and Ξ as a function of

the number of configurations (with the full set of measurements performed on it) for the exponential

analysis. Statistical and systematic uncertainties have been combined in quadrature. The curves

correspond to fits of the form δM/M = AN b
cfg. The exponents extract in these fits are -0.55(4),

-0.51(3), -0.38(4), -0.67(6) for the π+, K+, N and Ξ, respectively.

the same number of measurements on them (3600 configurations with 245 measurements:
27 M JLab-6n node-hours). Both approaches have similar cost at this level of precision, but
for further improvements, the generation of additional configurations will be more efficient.
Additionally, the second approach will further improve the uncertainty for observables such
as the pion mass that have saturated in terms of the number of sources per configuration.

X. CONCLUSIONS

The energy-scales that arise in nuclear physics are typically in the MeV range, and in order
for LQCD to have significant impact in this field, baryon masses (and energy-eigenstates in
the volumes relevant to scattering processes) must be calculable with uncertainties that are a
fraction of an MeV (including isospin-breaking and electromagnetic interactions, quark mass,
lattice volume and lattice spacing extrapolations). Current computational resources do not
permit such calculations. In this work we have performed the first high-statistics study of
baryon correlation functions to better understand a number of issues that will impact the
precision with which quantities of importance to nuclear physics can be determined with
LQCD. In the future, we will extend our analysis to look at observables in the B > 1 baryon
sector.
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FIG. 32: The fractional uncertainty in the extracted masses of the π+, K+, N and Ξ as a func-

tion of the number of sources used on each configuration (1025 configurations were used in this

study) for the exponential analysis. Statistical and systematic uncertainties have been combined

in quadrature. The curves correspond to fits of the form δM/M = AN b
src. The exponents extract

in these fits are -0.03(2), -0.65(19), -0.41(3), -0.40(6) for the π+, K+, N and Ξ, respectively.

At the unphysical quark mass used in this work, we find the following set of ground state
masses

Mπ = 0.3903(7)(3)(25) GeV, MK = 0.5460(6)(2)(36) GeV,

MN = 1.1639(18)(6)(76) GeV, MΛ = 1.2524(16)(3)(82) GeV,

MΣ = 1.2837(16)(10)(84) GeV, MΞ = 1.3561(14)(2)(88) GeV,

EN(1/2−) = 1.610(6)(11)(11) GeV, EΛ(1/2−) = 1.679(5)(2)(11) GeV,

EΣ(1/2−) = 1.727(6)(6)(11) GeV, EΞ(1/2−) = 1.825(6)(5)(12) GeV,

which we present in physical units. Since the lattice spacing is known with less precision
than the lattice masses presented here, we make the systematic uncertainty arising from the
lattice spacing explicit (third uncertainty). Given that there are significant ambiguities in
scale setting, the most precise result will be for dimensionless quantities.

With high precision measurements of baryon correlation functions obtained from a single
type of source for the light-quark and strange-quarks propagators, we have shown that
the number of methods that can be used to extract the arguments of the contributing
exponentials increases. This is due to the fact that some methods become stable when
the uncertainties become small, such as the method of Prony and also the direct fitting of
multiple exponentials. Histograms constructed from the roots found in the Prony method
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are found to be useful in identifying mass regions where states may exist, but we have not
yet arrived at a well-defined (rigorous) method with which to use these histograms directly.
It is likely that a more refined statistical analysis of these correlation functions using the
most modern statistical tools will further increase the physics that can be extracted.

The exponential signal-to-noise degradation that plagues baryon correlation functions
is currently a serious limitation for the calculation of nuclear physics observables, and is
one significant difference between particle and nuclear physics LQCD calculations. The
high statistics calculations we have performed have allowed us to systematically explore
this issue. We find that the issue is more serious than one would naively expect, due
to (what in hindsight is now obvious) the use of anti-periodic BC’s in the time-direction
on the quark-propagators. The variance of the correlation function is symmetric about
the mid-point of the time-direction of the configuration. Therefore, the optimal region in
which to determine the baryon masses (and also their interactions) is in the first half of
the configuration, far from the midpoint. This significantly reduces the number of useful
time-slices. Given that most the time required for these calculations is in the measurements,
and not in the configuration generation, a cure for this problem is to generate ensembles
of configurations that are longer in the time-direction than those currently being used (as
opposed to working with different BC’s on the quark propagators that are less theoretically
“clean”).9 The multi-exponential fitting and Prony methods enable the ground-state to be
probed closer to the source where the statistical uncertainties are exponentially smaller (also
one of the important aspects of the variational method), somewhat reducing the impact of
the exponentially degrading signal-to-noise near the mid-point of the configuration. Given
that the signal-to-noise degradation is exponentially more severe in systems containing two
or more baryons, all currently available tools will be required to make optimal use of the
computational resources. For excited states in a given channel, variational methods seem to
be superior to the standard approach used here.

An important result of this work has been to quantify the statistical scaling of simple
observables in the sub-percent regime of uncertainty. Scaling with the number of configu-
rations was found to adhere to the expected 1/

√

Ncfg behaviour. We have also investigated
the issue of saturation, asking many measurements can be performed on a single gauge-field
configuration before it becomes more cost effective to generate another statistically indepen-
dent gauge-field configuration? To address this we have looked for deviations from 1/

√
Nsrc

behavior in the uncertainties in the correlation functions and extracted masses as a function
of the number of measurements performed on each configuration in the ensemble. The mea-
surements of the mesons start to saturate after a relatively small number of measurements,
in this case of order ∼ 10, while the baryon correlation functions show no signs of saturation
up to ∼ 200.

A natural question to ask is if the same extractions could have been performed with
fewer computational resources by using the variational method with a number of different
sources for the baryons. We estimate that comparable resources would have been required
to achieve comparable uncertainties in the states we have examined. However, we have not
been able to extract excited states of the nucleon with much precision because of closely

9 We note that combining quark propagators with both periodic and anti-periodic temporal BCs, to effec-

tively double the length of the configurations as seen by the valence quarks, will not resolve all the noise

issues as much of the problem is produced by states involving sea quarks which are encoded in the gauge

configurations.
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spaced states with the same quantum numbers. This is likely to be something that the
variational method would better control. Given that the present work was exploratory in
nature, this is not a concern at present, but it is clear that high-statistics calculations of
correlation functions arising from multiple interpolating operators will be required in order
to explore the structure and interactions of nuclei. We are working on implementing this, but
it will require significant computational resources to perform, even at pion mass ∼ 390 MeV
and for a relatively small lattice volume and relatively coarse lattice spacing.

It is clear that sub-MeV uncertainties an hadron energies will become routine with the
anticipated increase in computational resources available to lattice QCD, and that the small
energy scales that characterize nuclear physics are within reach. However, this program
will require large ensembles of gauge-field configurations that have large extent in the time-
direction, and will require a large fraction of the computational resources devoted to mea-
surements.

XI. ACKNOWLEDGMENTS

We thank R. Edwards and B. Joo for help with the QDP++/Chroma programming envi-
ronment [13] with which the calculations discussed here were performed. KO would like to
thank A. Stathopoulos useful discussion on numerical linear algebra issues and for his con-
tribution in the development of the EigCG algorithm. EigCG development was supported
in part by NSF grant CCF-0728915. We also thank the Hadron Spectrum Collaboration
for permitting us to use the anisotropic gauge-field configurations, and extending the par-
ticular ensemble used herein. The computations for this work were performed at Jefferson
Lab, Fermilab, Lawrence Livermore National Laboratory, National Center for Supercom-
puting Applications, NERSC, Texas Advanced Computing Center, Centro Nacional de Su-
percomputación (Barcelona, Spain) and the Institute for Nuclear Theory. The work of MJS
and WD was supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-
97ER4014. The work of KO and WD was supported in part by the U.S. Dept. of Energy
contract No. DE-AC05-06OR23177 (JSA) and DOE grant DE-FG02-04ER41302. KO and
AWL were supported in part by the Jeffress Memorial Trust, grant J-813, DOE OJI grant
DE-FG02-07ER41527. The work of SRB and AT was supported in part by the National
Science Foundation CAREER grant No. PHY-0645570. Part of this work was performed
under the auspices of the US DOE by the University of California, Lawrence Livermore Na-
tional Laboratory under Contract No. W-7405-Eng-48. The work of AP is partly supported
by the Spanish Consolider-Ingenio 2010 Programme CPAN CSD2007-00042, by grants Nos.
FIS2008-01661 from MEC (Spain) and FEDER and 2005SGR-00343 from Generalitat de
Catalunya, and by the EU contract FLAVIAnet MRTN-CT-2006-035482.

[1] S. R. Beane, P. F. Bedaque, K. Orginos and M. J. Savage [NPLQCD Collaboration], Phys.

Rev. D 73 (2006) 054503 [arXiv:hep-lat/0506013].

[2] S. R. Beane, T. C. Luu, K. Orginos, A. Parreno, M. J. Savage, A. Torok and A. Walker-Loud,

Phys. Rev. D 77, 014505 (2008) [arXiv:0706.3026 [hep-lat]].

[3] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, M. J. Savage and A. Torok, Phys. Rev.

Lett. 100, 082004 (2008) [arXiv:0710.1827 [hep-lat]].

54

nijhuis2
Text Box
Prepared by LLNL under Contract DE-AC52-07NA27344.



[4] W. Detmold, M. J. Savage, A. Torok, S. R. Beane, T. C. Luu, K. Orginos and A. Parreno,

Phys. Rev. D 78, 014507 (2008) [arXiv:0803.2728 [hep-lat]].

[5] W. Detmold, K. Orginos, M. J. Savage and A. Walker-Loud, Phys. Rev. D 78, 054514 (2008)

[arXiv:0807.1856 [hep-lat]].

[6] L. Maiani and M. Testa, Phys. Lett. B 245 (1990) 585.

[7] H. W. Hamber, E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. B 225, 475 (1983).
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